OVS-FLOWVIZ(8) Open vSwitch OVS-FLOWVIZ(8)

NAME

ovs-flowviz — utility for visualizing OpenFlow and datapath flows

SYNOPSIS
ovs—flowviz [—i [alias.file | ——input [alias,]file] [—c file | ——config file] [f filter | —filter filter] [filter |
—-highlight filter] [-—style style] flow—type format [args...]

ovs—flowviz ——help
DESCRIPTION

ovs—flowviz helps visualize OpenFlow and datapath flow dumps in different formats in order to make them
more easily understood.

ovs—flowviz reads flows from stdin or from a file specified by the ——input option, filters them, highlights
them, and finally outputs them in one of the predefined formats.

OPTIONS
—h, —help
Print a brief help message to the console.

—i [<alias>,]<file>, ——input [<alias>,]<file>
File to read flows from. If not provided, ovs—flowviz will read flows from stdin.

This option can be specified multiple times. The file path can prepended by an alias that will be
shown in the output. For example: ——input nodel,/path/to/filel ——input node2,/path/to/file2

—c <file>, ——config <file>
Style configuration file to use, overriding the default one. Styles defined in the style configuration
file can be selected using the ——style option.

For more details on the style configuration file, see the Style Configuration File section below.

—f <filter>, —filter <filter>
Flow filter expression. Only those flows matching the expression will be shown (although some
formats implement filtering differently, see the Datapath tree format section below).

The filtering syntax is detailed in Filtering Syntax.

-1 <filter>, ——highlight <filter>
Highlight the flows that match the provided filter expression.

The filtering syntax is detailed in Filtering Syntax.

——style <style>
Style. The selected style must be defined in the style configuration file.

flow-type
openflow or datapath.

format See the Supported formats section.

SUPPORTED FORMATS

ovs—flowviz supports several visualization formats for both OpenFlow and datapath flows:

Flow Type | Format | Description

Both console | Prints the flows in a config-
urable, colorful style in the
console.

Both json Prints the flows in JSON for-
mat.

3.5 Feb 17, 2025 1

OVS-FLOWVIZ(8) Open vSwitch OVS-FLOWVIZ(8)

3.5

Both html Prints the flows in an HTML
list.

OpenFlow | cookie Prints the flows in the con-
sole sorted by cookie.

OpenFlow | logic Prints the logical structure of
flows in the console.

Datapath tree Prints the flows as a tree
structure arranged by re-
circ_id and in_port.

Datapath graph Prints a graphviz graph of
the flows arranged by re-
circ_id and in_port.

Console format
The console format works for both OpenFlow and datapath flow types, and prints flows in the terminal us-
ing the style determined by the ——style option.

Arguments:

—h, ——heat-map
Color of the packet and byte counters to reflect their relative size. The color gradient goes through
the following colors: blue (coldest, lowest), cyan, green, yellow, red (hottest, highest)

Note filtering is applied before the range is calculated.

JSON format
The json format works for both OpenFlow and datapath flow types, and prints flows in JSON format. See
the JSON Syntax section for more details.

HTML format
The html format works for both OpenFlow and datapath flows, and prints flows in an HTML table that of-
fers some basic interactivity. OpenFlow flows are sorted in tables and datapath flows are arranged in flow
trees (see Datapath tree format for more details).

Styles defined via Style Configuration File and selected via ——style option also apply to the html format.

OpenFlow cookie format
The OpenFlow cookie format is similar to the console format but instead of arranging the flows by table, it
arranges the flows by cookie.

OpenFlow logic format
The OpenFlow logic format helps visualize the logic structure of OpenFlow pipelines by arranging flows
into logical blocks. A logical block is a set of flows that have:

e Same priority.
* Match on the same fields (regardless of the match value and mask).
» Execute the same actions (regardless of the actions’ arguments, except for resubmit and output).

* Optionally, the cookie can be included as part of the logical flow.

Arguments:

—s, ——show-flows
Show all the flows under each logical block.

—d, ——ovn-detrace
Use ovn—detrace.py script to extract cookie information (implies ‘—c”).

Feb 17, 2025 2

OVS-FLOWVIZ(8) Open vSwitch OVS-FLOWVIZ(8)

—c, ——cookie
Consider the cookie in the logical block.

——ovn—detrace—path <path>
Use an alternative path to search for ovn_detrace.py.

——ovnnb-db <conn>
OVN NB database connection method (implies ‘—d’). Default:
“unix:/var/run/ovn/ovnnb_db.sock”.

——ovnsb—db <conn>
OVN SB database connection method (implies ‘—d’). Default: “unix:/var/run/ovn/ovnsb_db.sock™.

——o <filter>, ——ovn-filter <filter>
Specify the filter to be run on the ovn—detrace information. Syntax: python regular expression
(See https://docs.python.org/3/library/re.html).

—h, ——heat-map
Change the color of the packet and byte counters to reflect their relative size. The color gradient
goes through the following colors: blue (coldest, lowest), cyan, green, yellow, red (hottest, highest)

Note filtering is applied before the range is calculated.

Datapath tree format

The datapath tree format arranges datapath flows in a hierarchical tree. The tree is comprised of blocks
with the same recirc_id and in_port. Within those blocks, flows with the same action are combined. And
matches which are the same are omitted to reduce the visual noise.

When a flow’s actions includes the recirc() action with a specific recirc_id, flows matching on that re-
circ_id and the same in_port are listed below. This is done recursively for all actions.

The result is a hierarchical representation that shows how actions are related to each other via recirculation.
Note that flows with a specific non—zero recirc_id are listed below each group of flows that have a corre-
sponding recirc() action. Therefore, the output contains duplicated flows and can be verbose.

Filtering works in a slightly different way for datapath flow trees. Unlike other formats where a filter sim-
ply removes non—matching flows, the output of a filtered datapath flow tree will show full sub—trees that
contain at least one flow that satisfies the filter.

The html format prints this same tree as an interactive HTML table and the graph format shows the same
tree as a graphviz graph.

Datapath graph format

The datapath graph generates a graphviz visual representation of the same tree—like flow hierarchy that the
tree format prints.

Arguments:

—h, —html
Print the graphviz format as an svg image alongside an interactive HTML table of flows.

JSON SYNTAX

3.5

Printing a single—file OpenFlow or datapath dump without PMD thread blocks in json format results in a
list of JSON objects, each representing a flow.

This list can be found inside one or more levels of JSON dictionaries if multiple files are processed (file-
name used as key) or if PMD thread blocks are found in datapath flows (name of the thread used as key).

Each flow object includes the following keys:

Feb 17, 2025 3

OVS-FLOWVIZ(8) Open vSwitch OVS-FLOWVIZ(8)

3.5

orig Original flow string.
info Object with the flow information such as: cookie, duration, table, n_packets, n_bytes, etc.

match Object with the flow match. For each match, the object contains a key—value where the key is the
name of the match as defined in ovs—fields(7) and ovs—ofctl(8), and the value represents the match
value. The way each value is represented depends on its type. See Value representation.

actions List of action objects. Each action is represented by an JSON object that has one key and one
value. The key corresponds to the action name. The value represents the arguments of the key. See
Action representation.

ufid The UFID (datapath flows only).

Value representation
Values are represented differently depending on their type:

* Flags: The value of flags is true.

* Decimal / Hexadecimal: Represented by their integer value. If they support masking, represented by a
dictionary with two keys: value contains the field value and mask contains the mask. Both are integers.

» Ethernet: Represented by a string: {address}[/{mask}]
» IPv4 /IPv6: Represented by a string {address}[/{mask}]

* Registers: Represented by a dictionary with three keys: field" contains the field value (string), start, and
end represent the first and last bit of the register value.

For example, the register
NXM_NX REG10[0..15]
is represented as

{

"field": "NXM_NX_REG10",
"start": O,
"end": 15

by
Action representation

Actions are generally represented by an object that has a single key and value. The key is the action name
as defined ovs—actions(7).
The value of actions that have no arguments (such as drop) is (boolean) true.
The value of actions that have a list of arguments (e.g: resubmit([port],[table],[ct])) is an object that has
the name of the argument as key. The argument names for each action is defined in ovs—actions. For exam-
ple, the action

resubmit (,10)

is represented as

{

"resubmit": {
"port": " ",
"table": 10

Feb 17, 2025 4

OVS-FLOWVIZ(8) Open vSwitch OVS-FLOWVIZ(8)

The value of actions that have a key—word list as arguments (e.g: ct([argument])) is an object whose keys
correspond to the keys defined in ovs—actions(7). The way values are represented depends on the type of
the argument. For example, the action

ct (table=14, zone=NXM_NX_ REG12[0..15],nat)

is represented as

{

"ct": |

"table": 14,

"zone": {
"field": "NXM_NX_REG12",
"start": O,
"end": 15

}l

"nat": true

}
STYLE CONFIGURATION FILE

The style configuration file is selected via the ——config option and has INI syntax. It can define any number
of styles to be used by both console and html formats. Once defined in the configuration file, formats are
selected using the ——style option.

INI sections are used to define styles, [styles.mystyle] defines a style called mystle. Within a section styles
can be defined as:

[FORMAT] . [PORTION] . [SELECTOR] . [ELEMENT] = [VALUE]

FORMAT
Either console or html

PORTION
Part of the key—value the style applies to: key to indicate the key part of a key—value, value to in-
dicate the value part of a key—value, flag to indicate a single flag or delim to indicate delimiters
such as parentheses, brackets, etc.

SELECTOR
Select the key—value the style applies to: highlighted to indicate highlighted key—values,
type.<type> to indicate certain types such as IPAddress or EthMask or <keyname> to select a
particular key name.

ELEMENT
Select the style element to modify: color or underline (only for console format).

VALUE
Ether a color hex, other color names defined in the rich python library (-
https://rich.readthedocs.io/en/stable/appendix/colors.html) or true if the element is underline.

A default configuration file is shipped with ovs—flowviz and its path is printed in the —help output. A de-
tailed description of the syntax alongside some examples are available there.

FILTERING SYNTAX
ovs—flowviz provides rich highlighting and filtering. The special command ovs—flowviz filter dumps the
filtering syntax:

$ ovs—flowviz filter
Filter Syntax

35 Feb 17, 2025 5

OVS-FLOWVIZ(8) Open vSwitch OVS-FLOWVIZ(8)

khkkkkhkkkkhkkkkkk%

[! | not] {key}[[.subkey]...] [OPERATOR] {value})] [LOGICAL OPERATOR]

Comparison operators:
= equality
less than
more than
= masking (valid for IP and Ethernet fields)

VoA

Logical operators:
!'{expr}: NOT
{expr} && {expr}: AND
{expr} || {expr}: OR

Matches and flow metadata:
To compare against a match or info field, use the field directly, e.g:
priority=100
n_bytes>10
Use simple keywords for flags:
tcp and ip_src=192.168.1.1

Actions:
Actions values might be dictionaries, use subkeys to access individual
values, e.g:
output.port=3
Use simple keywords for flags
drop

Examples of valid filters:
nw_addr~=192.168.1.1 && (tcp_dst=80 || tcp_dst=443)
arp=true && l!arp_tsa=192.168.1.1
n_bytes>0 && drop=true
Example expressions:
n_bytes > 0 and drop

nw_src™=192.168.1.1 or arp.tsa=192.168.1.1
! tcp && output.port=2

EXAMPLES
Print OpenFlow flows sorted by cookie adding OVN data to each one:

$ ovs-flowviz -1 flows.txt openflow cookie --ovn-detrace
Print OpenFlow logical structure, showing the flows and heat—map:
$ ovs—-flowviz -i flows.txt openflow logic —--show-flows —--heat-map
Display OpenFlow flows in HTML format with “light” style and highlight drops:
$ ovs—flowviz —-i flows.txt —--style "light" --highlight "n_packets > 0 and drop" o

Display the datapath flows in an interactive graphviz + HTML view:

35 Feb 17, 2025 6

OVS-FLOWVIZ(8) Open vSwitch OVS-FLOWVIZ(8)

$ ovs-flowviz -i flows.txt datapath graph —--html > flows.html
Display the datapath flow trees that lead to packets being sent to port 10:

$ ovs—flowviz —-i flows.txt —--filter "output.port=10" datapath tree
AUTHOR

The Open vSwitch Development Community

COPYRIGHT
2016-2024, The Open vSwitch Development Community

3.5 Feb 17, 2025 7

