VSPERF and Open vSwitch for OPNFV

Mark Gray, Thomas Herbert and Maryam Tahhan.
What is OPNFV?
OPNFV is a carrier-grade, integrated, open source platform to accelerate the introduction of new NFV products and services.
OPNFV Membership List

Platinum Members

Silver Members

OPNFV
What does OPNFV do?
OPNFV is a carrier-grade, integrated, open source reference platform.

Work with upstream projects to coordinate continuous integration and testing.

Fill development gaps.

Establish an ecosystem for NFV solutions based on open standards and software.
How does it do it?
Open Source Community Working with Upstream Communities
OPNFV Releases

NOW AVAILABLE

Learn More: opnfv.org/arno

Brahmaputra
Release

Coming Soon
OPNFV Project pipeline
OPNFV Project pipeline

Apex (TripleO-based platform deployment)

Fuel (Fuel-based platform deployment)

Compass (Compass-based deployment)

OpenSteak (Foreman-based deployment)

OSCAR (system configuration and reporting)

Pharos (Lab federation and management)

RelEng (software development automation & infrastructure)

Octopus (OPNFV CI pipeline project)

Genesis (deployment calibration project)

Qtip (platform performance testing)

Yardstick (infrastructure validation framework)

Dovetail (OPNFV qualification tests)

VSPERF (vSwitch performance testing)

STORPERF (storage performance testing)

FuncTest (platform functional testing)

 OSCAR (system configuration and reporting)

Osc (OpenStack controller)

RelEng (software development automation & infrastructure)

Apex (TripleO-based platform deployment)

Fuel (Fuel-based platform deployment)

Compass (Compass-based deployment)

OpenSteak (Foreman-based deployment)

OSCAR (system configuration and reporting)

Pharos (Lab federation and management)

Octopus (OPNFV CI pipeline project)

Genesis (deployment calibration project)

Qtip (platform performance testing)

Yardstick (infrastructure validation framework)

Dovetail (OPNFV qualification tests)

VSPERF (vSwitch performance testing)

STORPERF (storage performance testing)

FuncTest (platform functional testing)

Apex (TripleO-based platform deployment)

Fuel (Fuel-based platform deployment)

Compass (Compass-based deployment)

OpenSteak (Foreman-based deployment)

OSCAR (system configuration and reporting)

Pharos (Lab federation and management)

Octopus (OPNFV CI pipeline project)

Genesis (deployment calibration project)

Qtip (platform performance testing)

Yardstick (infrastructure validation framework)

Dovetail (OPNFV qualification tests)

VSPERF (vSwitch performance testing)

STORPERF (storage performance testing)

FuncTest (platform functional testing)
OVS and Independent Data Plane

- OVS Architecture Supports Independent Data Planes
 - DPDK
 - Linux Kernel Data Plane
- OVS with Accelerated Data Plane
 - OVS with DPDK
 - Currently the Most Widely Adopted
 - The Most Promise for the Near Future
Open vSwitch Architecture and DPDK
DPDK – Open vSwitch

- DPDK – Data Plane Development Kit
 - About 4 Years Old
 - First Integrated with OVS from 2013
 - Fast Packet Forwarding
 - Poll Mode Drivers
 - Uses Commodity Hardware
 - Multiple Threads and Cores
 - Up to 12X Speed Improvement for small packets
 - Over 15mpps Forwarding
 - Small Packets

- Disadvantages WRT Linux Kernel
 - Linux Data Plane Has
 - Complete TCP/IP Stack
 - 20 years of development
 - Rich Debugging Options
 - Promiscuous IFs
 - Access to Wide Variety of Network IF’s and VF’s
 - Tunnels and Endpoints
OVSNFV – Phase 1 (Build, Integrate, Deploy, Test)
OVSNFV Project

- Collaborative Development
 - Incubation Stage
- Overall goal:
 - provide Open vSwitch with user space accelerated data plane for deployment within the OPNFV ecosystem.
- Take OVS and DPDK from the upstream projects
- Deploy OVS/DPDK as Package for use by
 - VSPERF
 - SFC
 - General Use as Deployed OVS in OPNFV
- Test and Verify Assumption of DPDK Use Case in OPNFV
- Provide Alternative OVS-Linux Kernel for Comparison
OVSNFV Project

- Project Wiki Page
 - https://wiki.opnfv.org/ovsnfv
- Project Lead
 - Mark Gray (Intel)
- Committers
 - Mark Gray (Intel)
 - Joseph Gasparakis (Intel)
 - Billy O Mahony (Intel)
 - Hongbo Tianhongbo (Huawei)
 - Thomas F Herbert (Red Hat)
OVSNFV Project

- Fed by Two Upstream Projects
 - Open vSwitch
 - DPDK
- We are NOT Forking Either DPDK or OVS
- Strive For Upstream Enablement for Easier OPNFV Integration
 - Upstream: Maintain “Similar” Semantics for Both
 - Although We May Use Patches before They Are Merged Upstream
 - To Support Specific Required Use Cases
OVSNFV Project – Upstream Issues

• DPDK Device Management
 • Driverctl Utility Preferably with Systemd patch
 • http://dpdk.org/ml/archives/dev/2015-November/028121.html
• NSH patch from Intel (Danny Zhou)
• “Alternate” RPM Install
 • Separate Glance Images for Ironic Compute Node Install
• ML2 Mechanism Driver Update for DPDK/OVS
• OpenStack ODL change to add Vhost-User Port Names
 • https://review.openstack.org/#/c/215612/
OVSNFV – Looking Forward

- Discover Requirements and Needed Features
- Deployment of OVS/DPDK in OPNFV
- Get Feedback from OPNFV Ecosystem
 - Gather Missing Required Features
- Push Issues Upstream to Improve
 - DPDK
 - OVS
- Merged into DPDK and OVS
OVSNFV – Looking Forward

- Discover Requirements and Needed Features
- Deployment of OVS/DPDK in OPNFV
- Get Feedback from OPNFV Ecosystem
 - Gather Missing Required Features
- Push Issues Upstream to Improve
 - DPDK
 - OVS
- Merged into DPDK and OVS
Define, implement and execute an appropriate set of tests in order to objectively measure the current Telco characteristics of a virtual switch in the NFVI.
VSPERF Standardization and Open Source Projects

Driving the standard platform – by doing

Feedback
VSPERF Deliverables

IETF Draft

Network Working Group
B. Tahan
Internet-Draft
Developed by: Intel
Expires: April 16, 2016

Benchmarks Virtual Switches in OPMFV
draft-vsperv-benvg-vswwitch-operator-01

Test Specification

CHARACTERIZE VSWITCH PERFORMANCE FOR TELCO NFV
USE CASES LEVEL TEST DESIGN

<table>
<thead>
<tr>
<th>Test Case</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VNF(s)</td>
<td>vSwitch</td>
</tr>
<tr>
<td>DUT</td>
<td>VSPERF</td>
</tr>
</tbody>
</table>

Modular Test Framework

Consumable by:

- IETF
- OPNFV
- OvS

Traffic Gen

Client

vSwitch

DUT
VSPERF 3x4 Matrix LTD Coverage

<table>
<thead>
<tr>
<th></th>
<th>SPEED</th>
<th>ACCURACY</th>
<th>RELIABILITY</th>
<th>SCALE</th>
</tr>
</thead>
</table>
| **Activation** | • RFC2889. AddressLearningRate
• RFC2889. AddressCachingCapacity
• InitialPacketProcessingLatency
• LatencyAndLatencyVariation | • CPDP.Coupling.Flow.Addition | • RFC2544.SystemRecoveryTime
• RFC2544.ResetTime | • RFC2889.AddressCachingCapacity |
| **Operation** | • RFC2544.PacketLossRatio
• RFC2544.PacketLossRateFrmMod
• RFC2544.BackToBackFrames
• RFC2889.MaxForwardingRate
• RFC2889.ForwardPressure
• RFC2889.BroadcastFrameForwarding
• RFC2889.Broadcast Frame Latency test
• CPU.RFC2544.0PacketLoss
• RFC2544.WorstN-BestN
• InterPacketDelayVariation.RFC5481 | • RFC2889.ErrorFramesFiltering
• RFC2544.Profile | • RFC2889.Soak
• RFC2889.SoakFrameModification
• PacketDelayVariation.RFC3393.Soak | • Scalability.RFC2544.0PacketLoss
• MemoryBandwidth.RFC2544.0PacketLoss.Scalability |
| **De-Activation** | | | | |

RFC2544 Benchmarking Methodology for Network Interconnect Devices
RFC2889 Benchmarking Methodology for LAN switching Devices
Future Work

- Integrating multiple traffic gens: IXIA, Spirent, Moongen and Xena.
- Methodology extensions: iterations for the short trial tests.
- Prove out and refine methodology and tests through the framework.
- Add more tests to the LTD and the framework.
- Continuous Integration support.
OVS call to action

- So join us in OPNFV to help establish an Open Source, carrier grade, integrated platform that includes a carrier grade OVS.
Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL
DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal
injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL
INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND
EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS’ FEES
ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY
WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE
DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the
absence or characteristics of any features or instructions marked “reserved” or “undefined”. Intel reserves these for future
definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information
here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product
order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by
calling 1-800-548-4725, or go to: www.intel.com/design/literature.htm

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family,
not across different processor families: Go to: Learn About Intel® Processor Numbers

Intel, the Intel logo, Itanium, Intel Atom, Intel Xeon Phi, Intel AppUp, and Xeon are trademarks of Intel Corporation in the U.S. and/or
other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2014 Intel Corporation. All rights reserved