
C like DSL for Open vSwitch
Saurabh Shrivastava
 @gokodogo

 Packet Processing Pipeline

rule=match+action● Processing pipeline has several stages

● Each stage is a table of rules

● Each rule has “match” and “actions”

● “data”: the “match” part of a rule and the
constants in the “actions” of a rule

● “code”: anything which is not “data”

A Packet Processing Pipeline

data
 code

 Code mixed with Data

● Table rules have “code” and “data”
 update of “code” can’t happen
independent of “data” e.g. bug fixes need
only “code” changes

A Packet Processing Pipeline
with loops

● Table modifies state (due to “code”)
 table can’t be reused easily e.g.
need for route lookup to be done on
source address for RPF checks in
addition to lookup done for destination
address

ROUTE TABLE

ODEE TABLE

data
 code

 Code separate from Data

● Table that has only “code”
 can be updated without touching
 forwarding state (“data”)
 can achieve 0 downtime!

● Table that has only “data”
 no side effects of updating state
 table can be reused e.g. ROUTE TABLE

ODEE TABLE

ROUTE TABLE

CODE

Packet Processing Pipeline
implemented by CODE TABLE

data
 code

 A different way to organize tables

● CODE table encodes forwarding logic

● A non-CODE table implements a lookup
“function” e.g. ROUTE table

● Code can “call” these “function”s

● RAM table implements a function which
takes in a 32b address and returns its 32b
contents

● Data structures can be laid down in RAM

ODEE TABLE

ROUTE TABLE

CODE

data
 code

RAM

 Programming model
100 void main (void)

110 {

120 struct context cx = context_lkup (NXM_OF_IN_PORT[], NXM_OF_ETH_SRC[]);

130 if (!cx.cx_tenant) { stats_inc (NXM_OF_IN_PORT[], E_NO_TENANT); goto done; }

140 u32 tenant_id = cx.cx_tenant->te_tenant_id;

150 if (!cx.cx_tenant->te_oper_state_up) { stats_inc (tenant_id, E_OPER_DOWN); goto done; }

160 u32 l3_vrf_id = cx.cx_l2subnet->l2_l3vrf->l3_vrf_id;

170 u8 ok = acl_lkup (l3_vrf_id); /* rest of match criteria from pkt fields */

CONTEXT
table lookup

RAM table
lookup

flow fields are “well
known” global

variables

● Flow fields are “well known” global variables e.g. NXM_OF_ETH_SRC[]
● Writing to a global variable updates the corresponding flow field
● Each packet goes through processing starting at “main”
● “main” may call other functions and lookup RAM
● All the writes done to global variables before returning from “main”

constitutes the actions to be performed on the packet

 Why another programming model?

● Use a model which has hi-fidelity with the real world so that event in the real
world can be translated to the model as-is
○ forwarding code doesnt change (CODE)
○ tenant info changes at a slower rate (RAM)
○ forwarding state change at a faster rate (ROUTE)

● (all other reasons why there are several programming languages)

 Why a higher level language?

● Coding at higher level of abstraction
 no worry about register liveness, function call setup, ...
 less lines of code
 less things to juggle in mind

■ less bugs
■ higher feature velocity
■ lower barrier to entry to write forwarding code
■ (all other reasons why C is better than assembly)

 Why C?

● “closer to the metal” i.e. each C statement translates to few deterministic
number of instructions

● Engineers already familiar with C

● Good optimizing compiler available which can optimize use of registers

● Mature static analysis tools available which can tell worst case code path and
worst case register usage

 Open vSwitch can simulate a stack based processor

● Several match tables
 table 0 for CODE, table 1 for RAM, ..

● Several registers
 store intermediate state while executing code

● Stack
 perform function calls

● goto_table, resubmit
 jump to different parts of code

● Atomic transactions for grouping updates
■ atomically update structs in RAM (software transactional memory)
■ atomically update all of CODE and achieve 0 downtime

 CODE (table 0)

100 void main (void)

110 {

120 struct context cx;

130 cx = context_lkup (NXM_OF_IN_PORT[],

140 NXM_OF_ETH_SRC[]);

150 if (!cx.cx_tenant) {

160 stats_inc (NXM_OF_IN_PORT[],

170 E_NO_TENANT);

180 }

000 priority=0, actions=

 load:130->NXM_NX_REG0[0..31],goto_table:0

130 reg0=130, priority=1, actions=

141 reg0=141, priority=1, actions=

150 reg0=150, priority=2, reg9=0, actions=

150 reg0=150, priority=1, actions=

160 reg0=160, priority=1, actions=

...

● Table 0 match criteria is only reg0 which is the “program counter”
● First rule to get executed is 000, a priority 0 rule to jump to the start of “main”
● function call uses one rule to make the call and another one to process result
● “if” uses priority 1 and 2 with same reg0 value
● All other rules are priority 1

 Calling a function

130 cx = context_lkup (NXM_OF_IN_PORT[],

140 NXM_OF_ETH_SRC[]);

141

150

130 reg0=130, priority=1, actions=

 push:NXM_NX_REG0[0..31], push:NXM_NX_REG1[0..31], push:NXM_NX_REG2[0..31], # save regs

 push:NXM_NX_REG3[0..31], push:NXM_NX_REG4[0..31], push:NXM_NX_REG5[0..31], # ...

 push:NXM_NX_REG6[0..31], push:NXM_NX_REG7[0..31], push:NXM_NX_REG8[0..31], # ...

 push:NXM_NX_REG9[0..31], # ...

 load:141->NXM_NX_REG1[0..31], push:NXM_NX_REG1[0..31], # push return address 141

 load:NXM_OF_IN_PORT[0..31]->NXM_NX_REG1[0..31], # load IN_PORT in reg1

 load:NXM_OF_ETH_SRC[0..31]->NXM_NX_REG2[0..31], # load ETH_SRC in reg2

 load:NXM_OF_ETH_SRC[32..47]->NXM_NX_REG3[0..15], # ... and reg3

 goto_table:210 # jump to CONTEXT table (table 210)

● Save registers on stack
● Push return address on stack
● Load arguments in registers reg1 onwards
● Jump to table implementing the function

 Processing function return value

130 cx = context_lkup (NXM_OF_IN_PORT[],

140 NXM_OF_ETH_SRC[]);

141

150

141 reg0=141, priority=1, actions= # process return values from call to CONTEXT table, jump to 150

 pop:NXM_NX_REG9[0..31], # pop cx.cx_tenant into reg9

 pop:NXM_NX_REG8[0..31], # pop cx.cx_l2subnet into reg8

 pop, pop # pop and discard saved reg9, reg8

 pop:NXM_NX_REG7[0..31], pop:NXM_NX_REG6[0..31], # pop and restore reg7 and reg6

 pop:NXM_NX_REG5[0..31], pop:NXM_NX_REG4[0..31], # pop and restore reg5 and reg4

 pop:NXM_NX_REG3[0..31], pop:NXM_NX_REG2[0..31], # pop and restore reg3 and reg2

 pop:NXM_NX_REG1[0..31], pop:NXM_NX_REG0[0..31], # pop and restore reg1 and reg0

 load:150->NXM_NX_REG0[0..31], goto_table:0 # jump to next statement (150)

● Pop return value into registers
● Pop saved registers
● Jump to next statement struct context {

 struct tenant *cx_tenant;
 struct l2subnet *cx_l2subnet;
};

 Function implementation

<10,00:aa:bb:cc:dd:ee> -> <0x0001a004,0x0008a044>

reg1=0x10, reg2=0x00aabbcc, reg3=0xddee, actions= # match on arguments

 pop:NXM_NX_REG0[0..31], # load return address

 load:0x0001a004->NXM_NX_REG1[0..31], push NXM_NX_REG1[0..31], # push cx.cx_l2subnet=0x0001a004

 load:0x0008a044->NXM_NX_REG1[0..31], push NXM_NX_REG1[0..31], # push cx.cx_tenant=0x0008a044

 goto_table:0 # jump back to caller

lookup failed

priority=0, actions=

 pop:NXM_NX_REG0[0..31], # load return address

 load:0x0->NXM_NX_REG1[0..31], push NXM_NX_REG1[0..31], # push cx.cx_l2subnet=0x0

 load:0x0->NXM_NX_REG1[0..31], push NXM_NX_REG1[0..31], # push cx.cx_tenant=0x0

 goto_table:0 # jump back to caller

● Match on function arguments
● Pop return address from stack
● Push return value on stack, jump back to caller

 RAM (table 1)

reg1=0x00010000, actions=load:0xabcdabcd->NXM_NX_REG1[0..31] # address 0x00010000 => 0xabcdabcd

reg1=0x00010004, actions=load:0xfefefefe->NXM_NX_REG1[0..31] # address 0x00010004 => 0xfefefefe

...
priority=0, actions=exit # address not found => exception

● Match on 32b address, load 32b contents of address
● Accessing uninitialized memory causes exit
● Complex data structures can be laid down in memory
● Bundle transactions can be used to update multiple addresses atomically

 explicit synchronization between reader (forwarding code) and writer
(controller) not needed - aka “software transactional memory”

● There is no explicit jumping back to caller because caller uses “resubmit”
instead of “goto_table”

 Pointers

200 u32 tenant_id;

210 tenant_id = cx.cx_tenant->te_tenant_id;

210 reg0=210, priority=1, actions=

 load:NXM_NX_REG9[0..31]->NXM_NX_REG1[0..31], # load cx.cx_tenant in reg1

 load:4->NXM_NX_REG1[0..10], # load offsetof (struct tenant, te_tenant_id) in bottom 10b

 resubmit (,1) # get cx.cx_tenant->te_tenant_id in reg1 by RAM lookup

 load:NXM_NX_REG1[0..31]->NXM_NX_REG8[0..31], # tenant_id = cx.cx_tenant->te_tenant_id

 load:220->NXM_NX_REG0[0..31], goto_table:0 # jump to next statement (statement 220)

● If struct starts at 1K boundary and is at
most 1K in size, address of a struct
member is address of struct with the
bottom 10b set as the offset of the
member

struct tenant {
 u8 te_oper_state_up :1;
 u32 te_tenant_id;
};

 “if”

150 if (!cx.cx_tenant) {

160 stats_inc (NXM_OF_IN_PORT[],

170 E_NO_TENANT);

180 }

150 reg0=150, priority=2, reg9=0,actions= # if cx.cx_tenant is NULL, jump to 160

 load:160->NXM_NX_REG0[0..31], goto_table:0

150 reg0=150, priority=1, actions= # if non NULL, jump to 210

 load:210->NXM_NX_REG0[0..31], goto_table:0

● Two rules with same reg0 value but
different priorities

● Higher priority rules matches on the
condition being 0 or false

● The two rules jump to different locations

 Next steps

● Make Open vSwitch a LLVM backend, so
that clang C compiler can be used

● Can “asm” can be used to embed OVS
instructions in the DSL

● Can service insertion be simulated as a
context switch where all state is saved
and packet is sent out, state is restored
when packet comes back and processing
continues from where it had left off

ODEE TABLE

ROUTE TABLE

CODE

data
 code

RAM

Thank you

