EVS Open vSwitch Fulvio Risso, Matteo Bertrone, Mauricio Vasquez Bernal Politecnico di Torino, Italy

COUPLING THE FLEXIBILITY OF OVN WITH THE EFFICIENCY OF IOVISOR: ARCHITECTURE AND DEMO

Datacenter Networking

- Datacenter networking nowadays requires a mix of different technologies
 - Linuxbridge, OvS, OpenFlow, Linux containers/Docker with native services (e.g., DHCP), ...
- Difficult to write and deploy new functions

The idea

- OVN
 - Addresses the problem of datacenter-wise orchestration
 - Runs with different cloud management systems
 (OpenStack, Mesos, ...)

 Bottom-layer technologies are the usual suspects

- IOVisor
 - Enables the creation of powerful network functions
 - Fast: running in kernel
 - Dynamically injectable at run-time
 - More flexible than OpenFlow actions

IOVisor

- Community-driven open source project
- Provides **development tools** that enable the creation of modules (IOModules), which can be dynamically injected in the kernel at run-time
- IOModules can be used to build networking (e.g., network functions), security, and tracing applications

Community Tool	s, Applications a	nd IO_Modules
IO Visor Tool	s IO \	lisor Dev Tools
1	O Visor Plugins	
Networking	IO Visor	Tracing
Security	Engine	Other
ODP	Kernel	DPDK
CPUs	Specialized HW	IO processors

IOModule

Network Functions via Virtual/Physical Appliances

- **eBPF** is a virtual machine that extends the classical BPF instruction set architecture
 - Includes just-in-time (JIT) compiler and a powerful verifier that avoids inconsistencies, safety issues and hazards
 - Now part of the Linux kernel
- An IOModule is an eBPF program that performs a specific task
 - Bridge, Router, NAT, etc.
- IOModules can be combined to create complex services (*service chain*)

Hover

- Userspace daemon that interacts with the Linux kernel and handles the lifecycle of IOModules
- It exposes a **REST API** front-end for dynamically loading, configuring, linking different IOModules to create a *service chain*

OpenStack - OVN architecture

- Northbound DB: high-level description of network services (logical switches, logical routers, etc.)
- northd: converts high-level descriptions from northDB to flow-like descriptions in southDB
- **Southbound DB**: logical flows and bindings tables, split per each compute node
- ovn-controller: executed on each hypervisor
 - Pushes the flows in OvS
 - Propagates any "physical" layer event (e.g., port down) to the upper layers
- **Open vSwitch**: in charge of the dataplane
- Bidirectional communication across the entire stack

IOVisor-OVN: architecture

- Starting point: keep OVN control plane, remove OvS dataplane
- IOVisor-OVN
 - Reads info from existing databases (NorthDB, SouthDB, ovs-localDB(s))
 - Maps changes (e.g., service requests) into IOModules
 - Exploits Hover to inject, configure and bind IOModules to network interfaces

IOVisor-OVN: internals

- OVN Monitor: in charge of the synchronization with OVN databases
- Main Logic: processing logic that reacts to DB changes and/or notification coming from hypervisors
- Hover Ctrl: talks with Hover daemon running on each hypervisor

OVN modifications

- Very limited
 - OVN-controller does not have to propagate commands to OvS (e.g., flow rules)
 - OVN does not have to start the OvS dataplane
- Some information are ignored
 - E.g., flow rules (that are no longer used to create bridged networks)

IOVisor-OVN: current status (1)

- Proof of concept supports OpenStack creating a L2 network on a single compute node through the ML2 OVN mechanism driver
 - Reacts to the following changes in the OVN databases: a switch, a port or a port security rule is added, modified or removed
 - When appropriate, it injects and configures the L2Switch IOModule through Hover (e.g., attaching the VM vNIC to the IOModule)
 - Handles the dynamic mapping of logical names (e.g., "port12" coming from Neutron) with actual names (e.g., "tap34" coming from the hypervisor)

IOVisor-OVN: current status (2)

- Created a minimal IOModules repository
 - L2 Switch with optional port security based on MAC and IP address
- CLI for debugging
 - Status of each IOModule on the hypervisor
 - Mapping of OVN info to IOModules

IOVisor-OVN: next steps

- Extend IOModules repository with more network functions
 - Router
 - NAT
- Extend the architecture to handle multiple hypervisors
- Investigate possible optimization strategies when distributed network functions are needed

How to try OVN-IOVisor

- Full stack deployable through DevStack
 - OpenStack, OVN*, Hover, IOVisor-OVN and all the associated dependencies
 - OVN*: vanilla OVN, with only OvS control plane (no data plane)
 - Single compute node
- More info:
 - https://github.com/netgroup-polito/iovisor-ovn/

Demo Overview

- Single node DevStack setup, with IOVisor-OVN as network backend
- Logical steps:

- Create an L2 Network
- Instantiate two VMs connected to that network
- VM1 and VM2 can ping each other
- Now, change (manually) the IP address on VM2
 - Security rule no longer appropriate
- Ping does no longer work

Demo

Our generous sponsors

Links

- IOVisor Project
 - <u>https://www.iovisor.org/</u>
- IOVisor-OVN
 - <u>https://github.com/netgroup-polito/iovisor-ovn</u>
 - <u>https://github.com/netgroup-polito/iovisor-ovn/blob/master/INSTALL.md</u>
- Customized versions of ovs and networking-ovn
 - <u>https://github.com/netgroup-polito/ovs</u>
 - <u>https://github.com/netgroup-polito/networking-ovn</u>

